Covariance and Correlation

$$
\begin{aligned}
& \operatorname{Cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1} \quad i=1,2,3_{1}, \ldots, n \\
& \operatorname{Cov}(x, y)=\frac{4+1+0+1+4}{5-1} \\
& =\frac{10}{4}=2.5 \\
& \begin{array}{l}
x \rightarrow \text { Increasing } \quad \bar{x}=\frac{1+2+3+4+5}{5}=3 \\
y \rightarrow \text { Increasing } \\
\bar{y}
\end{array} \\
& y \rightarrow \text { Increasing } \quad \bar{y}=\frac{\frac{1+2+3+4+5}{5}}{5}=3 \\
& \begin{array}{c|c|c|c|c|}
i & x & y & \left(x_{i}-\bar{x}\right) & \left(y_{i}-\bar{y}\right) \\
1 & 1 & 5 & -2 & \left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right) \\
2 & 2 & 4 & -1 & +1 \\
3 & 3 & 3 & 0 & -4 \\
4 & 4 & 2 & 1 & -1 \\
5 & 5 & 1 & 2 & -1 \\
\hline
\end{array} \\
& \begin{array}{l}
\bar{x}=3 \quad \operatorname{cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1} \\
\bar{y}=3
\end{array} \\
& =\frac{-4-1+0-1-4}{5-1} \\
& =\frac{-10}{4}=-2.5 \\
& X \rightarrow \text { Increases } \\
& y \rightarrow \text { Decreases }
\end{aligned}
$$

Correlation

$\operatorname{Cov}[x, y)=2.5$

$$
\begin{aligned}
& \sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \sigma_{y}=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}} \\
& \sigma_{x}=\sqrt{\frac{4+1+0+1+4}{5-1}}=\sqrt{\frac{10}{4}}=\sqrt{2 \cdot 5} \\
& \sigma_{y}=\sqrt{\frac{4+1+0+1+4}{5-1}}=\sqrt{\frac{10}{4}}=\sqrt{2 \cdot 5} \\
& \operatorname{Cov}(x, y)=\frac{2 \cdot 5}{\sqrt{2 \cdot 5} \times \sqrt{2 \cdot 5}}=1
\end{aligned}
$$

$$
\begin{align*}
& \frac{\cos (x, y)}{\cos (x, y)} \quad \frac{\operatorname{cov}}{\sigma_{x} \sigma x} \quad \operatorname{cov}(x, y)=-2.5 \\
& \sigma x=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \sigma y=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}} \\
& \sigma x=\sqrt{\frac{10}{5-1}}=\sqrt{2.5} \\
& \sigma y=\sqrt{\frac{10}{5-1}}=\sqrt{2.5} \\
& \operatorname{Cov}(x, y)=\frac{\operatorname{Cov}(x, y)}{\sigma x \cdot \sigma y}=\frac{-2 \cdot 5}{\sqrt{2.5} \sqrt{2.5}}=
\end{align*}
$$

Perron's correlation coefficient-

$$
\underline{\gamma_{x y}} \rightarrow[-1,+1]
$$

