Moments in Statistics Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

PostNetwork Academy Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

イロト 不良 トイヨト イヨト

• Moments are statistical measures that provide insights into the characteristics of a distribution.

E nar

イロト 不同 とくほ とくほ とう

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.
- Types of moments:

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point
 - Moments about the mean (Central Moments)

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point
 - Moments about the mean (Central Moments)
 - Moments about the origin

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- They are calculated as the r^{th} power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point
 - Moments about the mean (Central Moments)
 - 3 Moments about the origin
- Moments can be calculated for:

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- $\bullet\,$ They are calculated as the $r^{\rm th}$ power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point
 - Moments about the mean (Central Moments)
 - 3 Moments about the origin
- Moments can be calculated for:
 - Individual data

- Moments are statistical measures that provide insights into the characteristics of a distribution.
- $\bullet\,$ They are calculated as the $r^{\rm th}$ power of the deviation from a reference point.
- Types of moments:
 - Moments about an arbitrary point
 - Moments about the mean (Central Moments)
 - 3 Moments about the origin
- Moments can be calculated for:
 - Individual data
 - Frequency distributions

Moments about an Arbitrary Point (Individual Data)

Definition:

Bindeshwar Singh Kushwaha (PostNetwork Academy)

3

イロト 不同 とくほ とくほ とう

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

• r: Order of the moment.

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

- r: Order of the moment.
- x_i : Data points.

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

- r: Order of the moment.
- x_i : Data points.
- A: Reference point.

3

イロト 不同 トイヨト イヨト

Moments about an Arbitrary Point (Frequency Distribution)

Definition:

- * ロ * * @ * * 注 * * 注 * うへの

Moments about an Arbitrary Point (Frequency Distribution)

Definition: The moments about an arbitrary point A for a frequency distribution are calculated as:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

Definition: The moments about an arbitrary point A for a frequency distribution are calculated as: $\sum_{i=1}^{n} f(x_i - x_i)^{r}$

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

• r: Order of the moment.

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

- r: Order of the moment.
- x_i : Midpoints or values of the variable.

イロト 不得 トイヨト イヨト ニヨー

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

- r: Order of the moment.
- x_i : Midpoints or values of the variable.
- f_i : Frequencies corresponding to x_i .

э.

イロト 人間 ト イヨト イヨト

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

- r: Order of the moment.
- x_i : Midpoints or values of the variable.
- f_i : Frequencies corresponding to x_i .
- $\bullet~A:$ Reference point.

э.

イロト 人間ト イヨト イヨト

Moments about the Mean (Central Moments for Individual Data)

Definition:

- イロト (四) (三) (三) (三) (0)

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

• Common central moments:

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

• Common central moments:

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

- Common central moments:
 - μ_2 : Variance

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

- Common central moments:
 - μ_2 : Variance
 - μ_3 : Skewness

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

- Common central moments:
 - μ_2 : Variance
 - μ_3 : Skewness
 - μ_4 : Kurtosis

Moments about the Mean (Central Moments for Frequency Distribution)

Definition:

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

イロト 不同 トイヨト イヨト

Definition: The r^{th} central moment about the mean \bar{x} for a frequency distribution is:

Definition: The r^{th} central moment about the mean \bar{x} for a frequency distribution is:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

Definition: The r^{th} central moment about the mean \bar{x} for a frequency distribution is:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

• Common central moments:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

• Common central moments:

(日) (周) (日) (日) (日)

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

- Common central moments:
 - μ_2 : Variance

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

- Common central moments:
 - μ_2 : Variance
 - μ_3 : Skewness

イロト 不得 トイヨト イヨト ニヨー

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

- Common central moments:
 - μ_2 : Variance
 - μ_3 : Skewness
 - μ_4 : Kurtosis

イロト 不得 トイヨト イヨト ニヨー

Moments about the Origin (Individual Data)

Definition:

Bindeshwar Singh Kushwaha (PostNetwork Academy)

E nar

3

$$\mu_r'' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

3

ŀ

$$\iota_r'' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

• The first raw moment is the arithmetic mean:

3

ŀ

$$u_r'' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

• The first raw moment is the arithmetic mean:

$$\mu_1'' = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

3

Individual Data:

Individual Data:

• Moments about an arbitrary point:

3

イロト イヨト イヨト イヨト

Individual Data:

• Moments about an arbitrary point:

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

3

イロト イヨト イヨト

Individual Data:

• Moments about an arbitrary point:

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

• Central moments:

3

イロト イヨト イヨト イヨト

Individual Data:

• Moments about an arbitrary point:

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

• Central moments:

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

3

Individual Data:

• Moments about an arbitrary point:

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

• Central moments:

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

• Moments about the origin:

3

Individual Data:

• Moments about an arbitrary point:

$$\mu'_r = \frac{1}{n} \sum_{i=1}^n (x_i - A)^r$$

• Central moments:

$$\mu_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$

• Moments about the origin:

$$\mu_r'' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

3

Frequency Distribution:

Frequency Distribution:

• Moments about an arbitrary point:

э.

イロト イヨト イヨト イヨト

Frequency Distribution:

• Moments about an arbitrary point:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

3

Frequency Distribution:

• Moments about an arbitrary point:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

• Central moments:

3

Frequency Distribution:

• Moments about an arbitrary point:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

• Central moments:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

(日) (周) (日) (日) (日)

Frequency Distribution:

• Moments about an arbitrary point:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

• Central moments:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

• Moments about the origin:

3

イロト イヨト イヨト イヨト

Frequency Distribution:

• Moments about an arbitrary point:

$$\mu'_{r} = \frac{\sum_{i=1}^{n} f_{i}(x_{i} - A)^{r}}{\sum_{i=1}^{n} f_{i}}$$

• Central moments:

$$\mu_r = \frac{\sum_{i=1}^n f_i (x_i - \bar{x})^r}{\sum_{i=1}^n f_i}$$

• Moments about the origin:

$$\mu_r'' = \frac{\sum_{i=1}^n f_i x_i^r}{\sum_{i=1}^n f_i}$$

(日) (周) (日) (日) (日)