Covariance: A Numerical Example Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

3

Problem Statement and Table of Deviations

Example: Calculate the covariance between the age of husband and wife of the following seven couples.

Data:

- Age of Husband X: 35, 34, 40, 43, 56, 20, 38
- Age of Wife Y: 32, 30, 31, 32, 53, 20, 33

3

イロト 不同 トイヨト イヨト

Problem Statement and Table of Deviations

Example: Calculate the covariance between the age of husband and wife of the following seven couples.

Data:

- Age of Husband X: 35, 34, 40, 43, 56, 20, 38
- Age of Wife Y: 32, 30, 31, 32, 53, 20, 33

Deviations are: $u_i = x_i - 40$ and $v_i = y_i - 32$.

Table of Deviations and Products:

Xi	$u_i = x_i - 40$	y _i	$v_i = y_i - 32$	$u_i v_i$
35	-5	32	0	0
34	-6	30	-2	12
40	0	31	-1	0
43	3	32	0	0
56	16	53	21	336
20	-20	20	-12	240
38	-2	33	1	-2

イロン 不同 とくほう 不良 とうほう

The formula for covariance is:

$$\operatorname{Cov}(X,Y) = \frac{1}{n} \sum u_i v_i - \left(\frac{1}{n} \sum u_i\right) \left(\frac{1}{n} \sum v_i\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The formula for covariance is:

$$\operatorname{Cov}(X, Y) = \frac{1}{n} \sum u_i v_i - \left(\frac{1}{n} \sum u_i\right) \left(\frac{1}{n} \sum v_i\right)$$

Substituting the values:

•
$$n = 7$$
, $\sum u_i v_i = 586$, $\sum u_i = -14$, $\sum v_i = 7$

E nar

The formula for covariance is:

$$\operatorname{Cov}(X, Y) = \frac{1}{n} \sum u_i v_i - \left(\frac{1}{n} \sum u_i\right) \left(\frac{1}{n} \sum v_i\right)$$

Substituting the values:

- n = 7, $\sum u_i v_i = 586$, $\sum u_i = -14$, $\sum v_i = 7$
- Step 1: $\frac{1}{n} \sum u_i v_i = \frac{586}{7}$
- Step 2: $\frac{1}{n} \sum u_i = \frac{-14}{7} = -2$ and $\frac{1}{n} \sum v_i = \frac{7}{7} = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくや

The formula for covariance is:

$$\operatorname{Cov}(X, Y) = \frac{1}{n} \sum u_i v_i - \left(\frac{1}{n} \sum u_i\right) \left(\frac{1}{n} \sum v_i\right)$$

Substituting the values:

•
$$n = 7$$
, $\sum_{i} u_i v_i = 586$, $\sum_{i} u_i = -14$, $\sum_{i} v_i = 7$

• Step 1:
$$\frac{1}{n} \sum u_i v_i = \frac{580}{7}$$

• Step 2: $\frac{1}{n} \sum u_i = \frac{-14}{7} = -2$ and $\frac{1}{n} \sum v_i = \frac{7}{7} = 1$

• Step 3: Combine:

$$Cov(X, Y) = \frac{586}{7} - (-2)(1)$$

• Step 4: Simplify:

$$\operatorname{Cov}(X,Y)=85.71$$

3

Final Answer: The covariance is 85.71.

3

イロト 不同 トイヨト イヨト

Final Answer: The covariance is 85.71. Interpretation:

- The positive covariance (85.71) indicates a direct relationship.
- As the age of the husband increases, the age of the wife also tends to increase.

э.

Final Answer: The covariance is 85.71. Interpretation:

- The positive covariance (85.71) indicates a direct relationship.
- As the age of the husband increases, the age of the wife also tends to increase.

Covariance measures the linear association between two variables. A positive value means both variables move in the same direction.

イロト 不得下 イヨト イヨト

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

Thank You!