Vector and Vector Space in Linear Algebra

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ.

(日)

The set of all *n*-tuples of real numbers is denoted by \mathbb{R}^n :

$$u = (a_1, a_2, \ldots, a_n)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The set of all *n*-tuples of real numbers is denoted by \mathbb{R}^n :

$$u = (a_1, a_2, \ldots, a_n)$$

- Each u is called a point or vector.
- The components a_i are called coordinates, components, entries, or elements.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The set of all *n*-tuples of real numbers is denoted by \mathbb{R}^n :

$$u = (a_1, a_2, \ldots, a_n)$$

- Each u is called a point or vector.
- The components a_i are called coordinates, components, entries, or elements.
- The term scalar is used for elements of \mathbb{R} .

• Two vectors u and v are equal (u = v) if:

3

イロン イ理 とくほ とくほ とう

- Two vectors u and v are equal (u = v) if:
 - They have the same number of components, and

3

イロト 不得 とう アイロト

- Two vectors u and v are equal (u = v) if:
 - They have the same number of components, and
 - Corresponding components are equal.

э.

イロト 不得 とくほ とくほう

- Two vectors u and v are equal (u = v) if:
 - They have the same number of components, and
 - Corresponding components are equal.

• Example: $(1,2,3) \neq (2,3,1)$ even though they contain the same numbers.

- Two vectors u and v are equal (u = v) if:
 - They have the same number of components, and
 - Corresponding components are equal.
- Example: $(1,2,3) \neq (2,3,1)$ even though they contain the same numbers.
- The vector $(0, 0, \dots, 0)$ is called the zero vector, denoted by 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• (2, -5), (7, 9) \rightarrow elements of \mathbb{R}^2

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ ○ ○ ○ ○ ○

- (2, -5), (7, 9) \rightarrow elements of \mathbb{R}^2
- $(0,0,0) \rightarrow$ zero vector in \mathbb{R}^3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- (2, -5), (7, 9) \rightarrow elements of \mathbb{R}^2
- $(0,0,0) \rightarrow$ zero vector in \mathbb{R}^3
- $(3,4,5) \rightarrow \mathbf{vector} \ \mathbb{R}^3$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- (2, -5), (7, 9) \rightarrow elements of \mathbb{R}^2
- $(0,0,0) \rightarrow$ zero vector in \mathbb{R}^3
- (3,4,5) \rightarrow vector \mathbb{R}^3
- The first two belong to \mathbb{R}^2 , the last two to \mathbb{R}^3 .

Let V be a nonempty set with two operations:

• Vector Addition: Assigns to any $u, v \in V$ a sum $u + v \in V$.

3

(日)

Let V be a nonempty set with two operations:

- Vector Addition: Assigns to any $u, v \in V$ a sum $u + v \in V$.
- Scalar Multiplication: Assigns to any $u \in V$, $k \in K$ a product $ku \in V$.

Then V is a vector space over the field K if the following axioms hold for all vectors $u, v, w \in V$:

• [A1]
$$(u + v) + w = u + (v + w)$$

Bindeshwar Singh Kushwaha (PostNetwork Academy)

イロン イ理 とくほ とくほ とう

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u

イロン イ理 とくほ とくほ とう

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0
- $[\mathbf{A4}] \ u + v = v + u$

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0
- $[\mathbf{A4}] \ u + v = v + u$
- [M1] k(u+v) = ku + kv, for $k \in K$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0
- $[\mathbf{A4}] \ u + v = v + u$
- [M1] k(u+v) = ku + kv, for $k \in K$
- $[\mathbf{M2}] (a+b)u = au + bu$, for $a, b \in K$

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0
- $[\mathbf{A4}] \ u + v = v + u$
- [M1] k(u+v) = ku + kv, for $k \in K$
- $[\mathbf{M2}] (a+b)u = au + bu$, for $a, b \in K$
- $[\mathbf{M3}] a(bu) = (ab)u$, for $a, b \in K$

- [A1] (u + v) + w = u + (v + w)
- [A2] There exists $0 \in V$ such that u + 0 = 0 + u = u
- [A3] For each $u \in V$, there exists $-u \in V$ such that u + (-u) = (-u) + u = 0
- $[\mathbf{A4}] \ u + v = v + u$
- [M1] k(u+v) = ku + kv, for $k \in K$
- [M2] (a+b)u = au + bu, for $a, b \in K$
- $[\mathbf{M3}] a(bu) = (ab)u$, for $a, b \in K$
- [M4] 1u = u, for the unit scalar $1 \in K$

• The additive structure forms a commutative group.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- The additive structure forms a commutative group.
- Vector sum $v_1 + v_2 + \cdots + v_n$ is associative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- The additive structure forms a commutative group.
- Vector sum $v_1 + v_2 + \cdots + v_n$ is associative.
- Zero vector is unique, and each vector has a unique negative.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- The additive structure forms a commutative group.
- Vector sum $v_1 + v_2 + \cdots + v_n$ is associative.
- Zero vector is unique, and each vector has a unique negative.
- If u + w = v + w, then u = v (Cancellation Law).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- The additive structure forms a commutative group.
- Vector sum $v_1 + v_2 + \cdots + v_n$ is associative.
- Zero vector is unique, and each vector has a unique negative.
- If u + w = v + w, then u = v (Cancellation Law).
- Subtraction: u v = u + (-v)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$K^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in K\}$$

• Vector Addition: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$

$$K^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in K\}$$

- Vector Addition: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$
- Scalar Multiplication: $c(a_1, \ldots, a_n) = (ca_1, \ldots, ca_n)$

$$K^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in K\}$$

- Vector Addition: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$
- Scalar Multiplication: $c(a_1, \ldots, a_n) = (ca_1, \ldots, ca_n)$
- Zero vector: (0,0,...,0)

$$K^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in K\}$$

- Vector Addition: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$
- Scalar Multiplication: $c(a_1, \ldots, a_n) = (ca_1, \ldots, ca_n)$
- Zero vector: (0,0,...,0)
- Negative of a vector: $-(a_1, \ldots, a_n) = (-a_1, \ldots, -a_n)$

$$K^n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in K\}$$

- Vector Addition: $(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$
- Scalar Multiplication: $c(a_1, \ldots, a_n) = (ca_1, \ldots, ca_n)$
- Zero vector: (0,0,...,0)
- Negative of a vector: $-(a_1, \ldots, a_n) = (-a_1, \ldots, -a_n)$
- We regard K^n as a vector space over K.

Let $P(\mathbb{F})$ be the set of all polynomials:

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

• Vector Addition: (p+q)(x) = p(x) + q(x)

.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $P(\mathbb{F})$ be the set of all polynomials:

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

- Vector Addition: (p+q)(x) = p(x) + q(x)
- Scalar Multiplication: $(ap)(x) = a \cdot p(x)$

.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $P(\mathbb{F})$ be the set of all polynomials:

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

- Vector Addition: (p+q)(x) = p(x) + q(x)
- Scalar Multiplication: $(ap)(x) = a \cdot p(x)$
- Zero polynomial is 0(x) = 0

.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $P(\mathbb{F})$ be the set of all polynomials:

$$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

- Vector Addition: (p+q)(x) = p(x) + q(x)
- Scalar Multiplication: $(ap)(x) = a \cdot p(x)$
- Zero polynomial is 0(x) = 0
- $P(\mathbb{F})$ is a vector space over \mathbb{F}

.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let $P_n(\mathbb{F})$ be the set of polynomials of degree $\leq n$:

$$p(x) = a_0 + a_1 x + \cdots + a_n x^n$$

• $P_n(\mathbb{F})$ is a subspace of $P(\mathbb{F})$

イロト イポト イヨト イヨト 二日

Let $P_n(\mathbb{F})$ be the set of polynomials of degree $\leq n$:

$$p(x) = a_0 + a_1 x + \cdots + a_n x^n$$

- $P_n(\mathbb{F})$ is a subspace of $P(\mathbb{F})$
- Closed under addition and scalar multiplication

<ロ> (四) (四) (三) (三) (三) (三)

Let $M_{mn}(\mathbb{F})$ be the set of $m \times n$ matrices over field \mathbb{F} :

• Matrix addition and scalar multiplication are defined element-wise

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $M_{mn}(\mathbb{F})$ be the set of $m \times n$ matrices over field \mathbb{F} :

- Matrix addition and scalar multiplication are defined element-wise
- $M_{mn}(\mathbb{F})$ forms a vector space over \mathbb{F}

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Let X be a set, and F(X) the set of all functions $f: X \to \mathbb{F}$:

• (f+g)(x) = f(x) + g(x)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let X be a set, and F(X) the set of all functions $f: X \to \mathbb{F}$:

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(af)(x) = a \cdot f(x)$$

(日) (個) (E) (E) (E)

Let X be a set, and F(X) the set of all functions $f: X \to \mathbb{F}$:

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(af)(x) = a \cdot f(x)$$

• F(X) is a vector space over \mathbb{F}

- 王

イロン イ理 とくほ とくほ とう

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

(日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

(日) (問) (目) (日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

3

・ロッ ・ 日 ・ ・ 日 ・

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

・ロッ ・ 日 ・ ・ 日 ・

Reach PostNetwork Academy

Website

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

GitHub Repositories

www.github.com/postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy)