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Definition of Rn

The set of all n-tuples of real numbers is denoted by Rn:

u = (a1, a2, . . . , an)

Each u is called a point or vector.

The components ai are called coordinates, components, entries, or elements.

The term scalar is used for elements of R.
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Equality of Vectors and the Zero Vector

Two vectors u and v are equal (u = v) if:

They have the same number of components, and
Corresponding components are equal.

Example: (1, 2, 3) ̸= (2, 3, 1) even though they contain the same numbers.

The vector (0, 0, . . . , 0) is called the zero vector, denoted by 0.
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Example

The following are vectors:

(2,−5), (7, 9) → elements of R2

(0, 0, 0) → zero vector in R3

(3, 4, 5) → vector R3

The first two belong to R2, the last two to R3.
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Definition of a Vector Space

Let V be a nonempty set with two operations:

Vector Addition: Assigns to any u, v ∈ V a sum u + v ∈ V .

Scalar Multiplication: Assigns to any u ∈ V , k ∈ K a product ku ∈ V .

Then V is a vector space over the field K if the following axioms hold for all vectors
u, v ,w ∈ V :
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Vector Space Axioms

[A1] (u + v) + w = u + (v + w)

[A2] There exists 0 ∈ V such that u + 0 = 0 + u = u

[A3] For each u ∈ V , there exists −u ∈ V such that u + (−u) = (−u) + u = 0

[A4] u + v = v + u

[M1] k(u + v) = ku + kv , for k ∈ K

[M2] (a+ b)u = au + bu, for a, b ∈ K

[M3] a(bu) = (ab)u, for a, b ∈ K

[M4] 1u = u, for the unit scalar 1 ∈ K
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Remarks

The additive structure forms a commutative group.

Vector sum v1 + v2 + · · ·+ vn is associative.

Zero vector is unique, and each vector has a unique negative.

If u + w = v + w , then u = v (Cancellation Law).

Subtraction: u − v = u + (−v)
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Vector Space: K n

Let K be a field. Then K n is the set of all n-tuples of elements in K :

K n = {(a1, a2, . . . , an) | ai ∈ K}

Vector Addition: (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

Scalar Multiplication: c(a1, . . . , an) = (ca1, . . . , can)

Zero vector: (0, 0, . . . , 0)

Negative of a vector: −(a1, . . . , an) = (−a1, . . . ,−an)

We regard K n as a vector space over K .
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Polynomial Space P(F)

Let P(F) be the set of all polynomials:

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

Vector Addition: (p + q)(x) = p(x) + q(x)

Scalar Multiplication: (ap)(x) = a · p(x)
Zero polynomial is 0(x) = 0

P(F) is a vector space over F

.
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Polynomial Subspace Pn(F)

Let Pn(F) be the set of polynomials of degree ≤ n:

p(x) = a0 + a1x + · · ·+ anx
n

Pn(F) is a subspace of P(F)

Closed under addition and scalar multiplication
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Matrix Space Mmn(F)

Let Mmn(F) be the set of m × n matrices over field F:
Matrix addition and scalar multiplication are defined element-wise

Mmn(F) forms a vector space over F
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Function Space F (X )

Let X be a set, and F (X ) the set of all functions f : X → F:
(f + g)(x) = f (x) + g(x)

(af )(x) = a · f (x)
F (X ) is a vector space over F
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