Vector Subspace in Linear Algebra

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ.

(日)

Definition

Let V be a vector space over a field K and let $W \subseteq V$.

э.

(日)

Definition

Let V be a vector space over a field K and let $W \subseteq V$. Then W is a subspace of V if W is itself a vector space over K with respect to vector addition and scalar multiplication from V.

ъ.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition

Let V be a vector space over a field K and let $W \subseteq V$. Then W is a subspace of V if W is itself a vector space over K with respect to vector addition and scalar multiplication from V.

Note: If $W \subseteq V$ and satisfies the vector space axioms, then it is a subspace. We use a simplified criterion below.

ъ.

イロト 不得 とくほ とくほとう

• The zero vector $\vec{0} \in W$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- The zero vector $\vec{0} \in W$
- For all $u, v \in W, u + v \in W$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- The zero vector $\vec{0} \in W$
- For all $u, v \in W$, $u + v \in W$
- For all $u \in W$ and $k \in K$, $ku \in W$

3

イロン イ理 とくほ とくほ とう

- The zero vector $\vec{0} \in W$
- For all $u, v \in W, u + v \in W$
- For all $u \in W$ and $k \in K$, $ku \in W$

Equivalently: For any $u, v \in W$ and scalars $a, b \in K$, $au + bv \in W$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

• Every vector space V has two subspaces:

æ –

イロト イヨト イヨト イヨト

- Every vector space V has two subspaces:
 - {0}: the zero subspace

2

イロン イ理 とくほ とくほ とう

- Every vector space V has two subspaces:
 - $\{0\}$: the zero subspace
 - V: the whole space

2

・ロト ・聞 ト ・ 国 ト ・ 国 ト

- Every vector space V has two subspaces:
 - $\{0\}$: the zero subspace
 - V: the whole space
- \bullet These are called the trivial subspaces of V

э.

*ロト *部ト *ヨト *ヨト

Example: A Subspace of \mathbb{R}^3

Let $V = \mathbb{R}^3$, and define:

$$U = \{(a, b, c) \in \mathbb{R}^3 \mid a = b = c\}$$

æ -

イロン イ理 とくほ とくほ とう

$$U=\{(a,b,c)\in \mathbb{R}^3\mid a=b=c\}$$

Then U contains all vectors like:

(1, 1, 1), (-3, -3, -3), (7, 7, 7)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$U=\{(a,b,c)\in \mathbb{R}^3\mid a=b=c\}$$

Then U contains all vectors like:

$$(1, 1, 1), (-3, -3, -3), (7, 7, 7)$$

Check Subspace Conditions:

• $\vec{0} = (0, 0, 0) \in U$

3

イロト イヨト イヨト イヨト

$$U=\{(a,b,c)\in\mathbb{R}^3\mid a=b=c\}$$

Then U contains all vectors like:

$$(1, 1, 1), (-3, -3, -3), (7, 7, 7)$$

Check Subspace Conditions:

- $\vec{0} = (0, 0, 0) \in U$
- Closed under addition: if $u = (a, a, a), v = (b, b, b) \Rightarrow u + v = (a + b, a + b, a + b) \in U$

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ●

$$U=\{(a,b,c)\in\mathbb{R}^3\mid a=b=c\}$$

Then U contains all vectors like:

$$(1, 1, 1), (-3, -3, -3), (7, 7, 7)$$

Check Subspace Conditions:

- $\vec{0} = (0, 0, 0) \in U$
- Closed under addition: if $u = (a, a, a), v = (b, b, b) \Rightarrow u + v = (a + b, a + b, a + b) \in U$
- Closed under scalar multiplication: $ku = (ka, ka, ka) \in U$

$$U=\{(a,b,c)\in \mathbb{R}^3\mid a=b=c\}$$

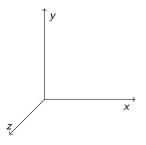
Then U contains all vectors like:

$$(1, 1, 1), (-3, -3, -3), (7, 7, 7)$$

Check Subspace Conditions:

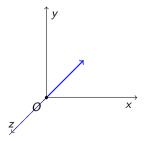
- $\vec{0} = (0, 0, 0) \in U$
- Closed under addition: if $u = (a, a, a), v = (b, b, b) \Rightarrow u + v = (a + b, a + b, a + b) \in U$
- Closed under scalar multiplication: $ku = (ka, ka, ka) \in U$
- Hence, U is a subspace of \mathbb{R}^3 .

• Let $U = \{(a, a, a) : a \in \mathbb{R}\}$



(日)(四)(日)(日)(日)(日)

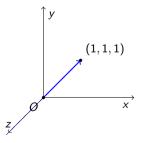
- Let $U = \{(a, a, a) : a \in \mathbb{R}\}$
- It passes through the origin (0,0,0)



3

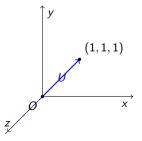
< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let $U = \{(a, a, a) : a \in \mathbb{R}\}$
- It passes through the origin (0,0,0)
- Closed under addition: $(a, a, a) + (b, b, b) = (a + b, a + b, a + b) \in U$



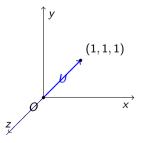
3

- Let $U = \{(a, a, a) : a \in \mathbb{R}\}$
- It passes through the origin (0,0,0)
- Closed under addition: $(a, a, a) + (b, b, b) = (a + b, a + b, a + b) \in U$
- Closed under scalar multiplication: $k(a, a, a) = (ka, ka, ka) \in U$



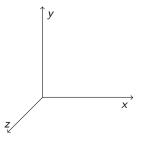
イロト イポト イヨト イヨト

- Let $U = \{(a, a, a) : a \in \mathbb{R}\}$
- It passes through the origin (0,0,0)
- Closed under addition: $(a, a, a) + (b, b, b) = (a + b, a + b, a + b) \in U$
- Closed under scalar multiplication: $k(a, a, a) = (ka, ka, ka) \in U$
- Hence, U is a subspace of \mathbb{R}^3



イロト イポト イヨト イヨト

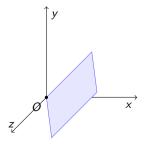
• Let W be a plane in \mathbb{R}^3 passing through origin



э.

イロト 不得 とくほ とくほう

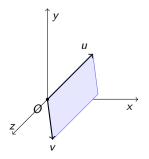
- Let W be a plane in \mathbb{R}^3 passing through origin
- $0 = (0, 0, 0) \in W$



э.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

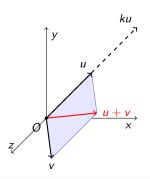
- Let W be a plane in \mathbb{R}^3 passing through origin
- $0 = (0, 0, 0) \in W$
- For $u, v \in W$, the sum $u + v \in W$



3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Let W be a plane in \mathbb{R}^3 passing through origin
- $0 = (0, 0, 0) \in W$
- For $u, v \in W$, the sum $u + v \in W$
- For scalar $k, ku \in W$

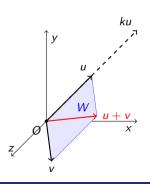


э.

★ Ξ ► < Ξ ►</p>

< 口 > < 同 >

- Let W be a plane in \mathbb{R}^3 passing through origin
- $0 = (0, 0, 0) \in W$
- For $u, v \in W$, the sum $u + v \in W$
- For scalar $k, ku \in W$
- Hence, W is a subspace of \mathbb{R}^3



3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Let $V = M_{n,n}$, the vector space of $n \times n$ matrices.
 - Let W_1 : subset of all upper triangular matrices

3

イロト 不得 とくほ とくほう

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices

э.

イロト イポト イヨト イヨト

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:
 - Contains zero matrix 0

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:
 - Contains zero matrix 0
 - Closed under matrix addition

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:
 - Contains zero matrix 0
 - Closed under matrix addition
 - Closed under scalar multiplication

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:
 - Contains zero matrix 0
 - Closed under matrix addition
 - Closed under scalar multiplication
- So, W_1 is a subspace of V

- Let W_1 : subset of all upper triangular matrices
- Let W_2 : subset of all symmetric matrices
- $W_1 \subseteq V$ because:
 - Contains zero matrix 0
 - Closed under matrix addition
 - Closed under scalar multiplication
- So, W_1 is a subspace of V
- Similarly, W_2 is also a subspace of V

- Let V = P(t), the vector space of polynomials.
 - Let $P_n(t)$: polynomials of degree at most n

э.

イロン イ理 とくほ とくほ とう

- Let $P_n(t)$: polynomials of degree at most n
- Let Q(t): polynomials with only even powers of t

э.

イロト 人間 とくほ とくほ とう

- Let $P_n(t)$: polynomials of degree at most n
- Let Q(t): polynomials with only even powers of t
- Then $Q(t) \subseteq P(t)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $P_n(t)$: polynomials of degree at most n
- Let Q(t): polynomials with only even powers of t
- Then $Q(t) \subseteq P(t)$
- Example polynomials in Q(t):

$$p_1 = 3 + 4t^2 - 5t^6$$
$$p_2 = 6 - 7t^4 + 9t^6 + 3t^{12}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $P_n(t)$: polynomials of degree at most n
- Let Q(t): polynomials with only even powers of t
- Then $Q(t) \subseteq P(t)$
- Example polynomials in Q(t):

$$p_1 = 3 + 4t^2 - 5t^6$$

 $p_2 = 6 - 7t^4 + 9t^6 + 3t^{12}$

• Constant
$$k = kt^0$$
 is an even power \rightarrow included

・ロット (雪) (日) (日) (日)

- Let $P_n(t)$: polynomials of degree at most n
- Let Q(t): polynomials with only even powers of t
- Then $Q(t) \subseteq P(t)$
- Example polynomials in Q(t):

$$p_1 = 3 + 4t^2 - 5t^6$$
$$p_2 = 6 - 7t^4 + 9t^6 + 3t^{12}$$

- Constant $k = kt^0$ is an even power \rightarrow included
- So, Q(t) is a subspace of P(t)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let W_1 : collection of all continuous functions

э.

・ロッ ・ 日 ・ ・ 日 ・

- Let W_1 : collection of all continuous functions
 - **Example:** $f(x) = \sin x, \ g(x) = |x|$

<ロ> (四) (四) (三) (三) (三) (三)

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions

<ロ> (四) (四) (三) (三) (三) (三)

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions

• Example:
$$h(x) = x^2$$
, $p(x) = e^x$

<ロ> (四) (四) (三) (三) (三) (三)

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions
 - Example: $h(x) = x^2$, $p(x) = e^x$
- Both W_1 and W_2 are closed under:

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ● ●

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions
 - Example: $h(x) = x^2$, $p(x) = e^x$
- Both W_1 and W_2 are closed under:
 - Addition: f(x) + g(x), h(x) + p(x)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions
 - Example: $h(x) = x^2$, $p(x) = e^x$
- Both W_1 and W_2 are closed under:
 - Addition: f(x) + g(x), h(x) + p(x)
 - Scalar multiplication: 3f(x), -2h(x)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Let W_1 : collection of all continuous functions
 - Example: $f(x) = \sin x$, g(x) = |x|
- Let W_2 : collection of all differentiable functions
 - Example: $h(x) = x^2$, $p(x) = e^x$
- Both W_1 and W_2 are closed under:
 - Addition: f(x) + g(x), h(x) + p(x)
 - Scalar multiplication: 3f(x), -2h(x)
- So, W_1 and W_2 are subspaces of V

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ

(日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

(日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э.

・ロッ ・ 日 ・ ・ 日 ・

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

・ロッ ・ 日 ・ ・ 日 ・

Reach PostNetwork Academy

Website

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

GitHub Repositories

www.github.com/postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

Thank You!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶