
Neural Network Architecture for Iris Data Set

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 1 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data

Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data

Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network

Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights

Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer

Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot

Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Outline

Iris Dataset Overview

Neural Network Architecture

Mathematical Formulation

Visualization of IrisNet

Code Walkthrough

Import Libraries and Load Data
Convert to Tensors and Split Data
Define Neural Network
Initialize Weights
Loss Function and Optimizer
Training Loop and Live Plot
Accuracy Evaluation

Summary and Conclusion

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 2 / 25



Sample from Iris Dataset

Sepal Length Sepal Width Petal Length Petal Width Class
5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
6.2 2.9 4.3 1.3 Versicolor
6.4 3.2 4.5 1.5 Versicolor
5.9 3.0 5.1 1.8 Virginica
6.3 3.3 6.0 2.5 Virginica
5.0 3.4 1.5 0.2 Setosa
6.0 2.2 4.0 1.0 Versicolor
5.8 2.7 5.1 1.9 Virginica
5.4 3.9 1.7 0.4 Setosa

Each instance contains 4 features: sepal length, sepal width, petal length, and petal width.
These are fed into the input layer. The class label is used for supervised learning to guide the

training process.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 3 / 25



Step-by-Step Explanation of IrisNet

Input Layer:

4 features: sepal length, sepal width, petal length, petal width.
Represented by 4 input neurons.

Hidden Layer:

10 fully connected neurons.
Applies ReLU activation for non-linearity.

Output Layer:

3 neurons for classifying Iris Setosa, Versicolor, and Virginica.
Final outputs used with softmax.

Training Setup:

Loss function: Mean Squared Error (MSE).
Optimizer: Stochastic Gradient Descent (SGD) with learning rate 0.001.
Weight initialization: Xavier for better convergence.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 4 / 25



Step-by-Step Explanation of IrisNet

Input Layer:

4 features: sepal length, sepal width, petal length, petal width.
Represented by 4 input neurons.

Hidden Layer:

10 fully connected neurons.
Applies ReLU activation for non-linearity.

Output Layer:

3 neurons for classifying Iris Setosa, Versicolor, and Virginica.
Final outputs used with softmax.

Training Setup:

Loss function: Mean Squared Error (MSE).
Optimizer: Stochastic Gradient Descent (SGD) with learning rate 0.001.
Weight initialization: Xavier for better convergence.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 4 / 25



Step-by-Step Explanation of IrisNet

Input Layer:

4 features: sepal length, sepal width, petal length, petal width.
Represented by 4 input neurons.

Hidden Layer:

10 fully connected neurons.
Applies ReLU activation for non-linearity.

Output Layer:

3 neurons for classifying Iris Setosa, Versicolor, and Virginica.
Final outputs used with softmax.

Training Setup:

Loss function: Mean Squared Error (MSE).
Optimizer: Stochastic Gradient Descent (SGD) with learning rate 0.001.
Weight initialization: Xavier for better convergence.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 4 / 25



Step-by-Step Explanation of IrisNet

Input Layer:

4 features: sepal length, sepal width, petal length, petal width.
Represented by 4 input neurons.

Hidden Layer:

10 fully connected neurons.
Applies ReLU activation for non-linearity.

Output Layer:

3 neurons for classifying Iris Setosa, Versicolor, and Virginica.
Final outputs used with softmax.

Training Setup:

Loss function: Mean Squared Error (MSE).
Optimizer: Stochastic Gradient Descent (SGD) with learning rate 0.001.
Weight initialization: Xavier for better convergence.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 4 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.

Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)

Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



IrisNet Architecture: 4-10-3 Feedforward Network

x1

x2

x3

x4

Bias

Bias

o1

o2

o3

Input Layer (4 Features)

Hidden Layer (10 Neurons, ReLU)

Output Layer (3 Classes)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 6 / 25



1. Import Libraries and Load Data

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import matplotlib.pyplot as plt
import numpy as np

iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1)

encoder = OneHotEncoder(sparse_output=False)
y_onehot = encoder.fit_transform(y)

scaler = StandardScaler()
X = scaler.fit_transform(X)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 7 / 25



2. Convert to Tensors and Split Data

X = torch.tensor(X, dtype=torch.float32)

y_onehot = torch.tensor(y_onehot, dtype=torch.float32)

X_train, X_test, y_train, y_test = train_test_split(

X, y_onehot, test_size=0.2, random_state=42)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 8 / 25



3. Define Neural Network Model

class IrisNet(nn.Module):

def __init__(self):

super(IrisNet, self).__init__()

self.fc1 = nn.Linear(4, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

x = self.relu(self.fc1(x))

x = self.fc2(x)

return x

model = IrisNet()

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 9 / 25



4. Initialize Weights

def init_weights(m):

if isinstance(m, nn.Linear):

nn.init.xavier_uniform_(m.weight)

nn.init.zeros_(m.bias)

model.apply(init_weights)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 10 / 25



5. Loss and Optimizer

criterion = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 11 / 25



6. Setup Live Plot

plt.ion()

fig, ax = plt.subplots()

losses = []

line, = ax.plot(losses)

ax.set_xlim(0, 100)

ax.set_ylim(0, 2)

ax.set_xlabel("Epoch")

ax.set_ylabel("Loss")

ax.set_title("Live Training Loss")

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 12 / 25



7. Training Loop

epochs = 2000
for epoch in range(epochs):

model.train()
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()

losses.append(loss.item())
line.set_xdata(range(len(losses)))
line.set_ydata(losses)
ax.set_xlim(0, max(10, len(losses)))
ax.set_ylim(0, max(losses) + 0.2)
fig.canvas.draw()
fig.canvas.flush_events()

with torch.no_grad():
model.eval()
test_outputs = model(X_test)
predicted = torch.argmax(test_outputs, dim=1)
true_labels = torch.argmax(y_test, dim=1)
correct = (predicted == true_labels).sum().item()
accuracy = correct / y_test.size(0)
print(f"Epoch {epoch}, Loss: {loss.item():.4f}, Accuracy: {accuracy:.4f}")

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 13 / 25



8. Turn Off Interactive Plot

plt.ioff()

plt.show()

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 14 / 25



9. Softmax for Class Probabilities

with torch.no_grad():

model.eval()

outputs = model(X_test)

probs = torch.softmax(outputs, dim=1)

print("Class Probabilities (Softmax):")

print(probs)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 15 / 25



10. Inspect Final Weights

print("\nFinal weights of the first layer (fc1):")

print(model.fc1.weight.data)

print("\nFinal weights of the second layer (fc2):")

print(model.fc2.weight.data)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 16 / 25



Neural Network Architecture

Input: 4 features (Sepal length, Sepal width, Petal length, Petal width)

First layer: Fully connected (fc1) with 10 neurons

Activation function: ReLU

Second layer: Fully connected (fc2) with 3 output neurons

Output: Probabilities for 3 classes (Setosa, Versicolor, Virginica)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 17 / 25



Input Sample

Input vector: x = [5.1, 3.5, 1.4, 0.2]

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 18 / 25



Weight Matrix of fc1 (10x4)

fc1 =



0.0092 −0.0404 −0.3916 −0.1771
0.0117 −0.5770 0.4710 0.0087
−0.1683 0.0416 0.0222 −0.5558
−0.0390 −0.2463 0.4016 0.1148
−0.4950 −0.1222 −0.0821 0.0790
−0.6394 0.5196 0.1958 0.2125
0.3020 −0.3998 0.6373 0.1429
−0.2564 0.2739 −0.1146 0.6342
0.3693 0.0801 −0.4481 0.0520
0.2756 −0.1551 −0.4070 0.3018



Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 19 / 25



First Layer Computation

Compute h = ReLU(W T
1 x):

h1 = ReLU(0.0092 ∗ 5.1 + (−0.0404) ∗ 3.5 + (−0.3916) ∗ 1.4 + (−0.1771) ∗ 0.2)
= ReLU(−0.6000) = 0

...

h10 = ReLU(0.2756 ∗ 5.1 + (−0.1551) ∗ 3.5 + (−0.4070) ∗ 1.4 + 0.3018 ∗ 0.2)
= ReLU(0.7638) = 0.7638

(Only sample entries shown; full values computed similarly)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 20 / 25



Hidden Activation Vector

Let’s assume after computing and applying ReLU, we get:

h = [0, 0, 0, 0.1, 0, 0.3, 0.2, 0, 0.05, 0.76]

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 21 / 25



Weight Matrix of fc2 (3x10)

fc2 =

−0.3187 −0.5667 0.5418 0.5634 0.3118 0.3645 0.0211 −0.4647 0.1253 0.0995
−0.5565 0.7621 0.2503 −0.5887 0.2597 −0.0413 −0.1991 0.3135 0.3297 −0.4748
−0.6170 −0.4492 0.2311 0.6591 0.4670 0.1357 0.6929 0.4587 −0.2368 0.4764



Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 22 / 25



Second Layer Computation

Compute final output: y = W T
2 h

y1 = −0.3187 ∗ 0 + ...+ 0.0995 ∗ 0.76 = 0.0756

y2 = −0.5565 ∗ 0 + ...− 0.4748 ∗ 0.76 = −0.36

y3 = −0.6170 ∗ 0 + ...+ 0.4764 ∗ 0.76 = 0.45

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 23 / 25



Prediction Using Softmax

Output logits from the network:
z = [0.0756,−0.36, 0.45]

Apply the Softmax function:

Softmax(zi ) =
ezi∑3
j=1 e

zj

Compute exponentials (shifted for numerical stability):
Let’s subtract the max logit (0.45) from each for stability:

z′ = [0.0756 − 0.45,−0.36 − 0.45, 0.45 − 0.45] = [−0.3744,−0.81, 0]

ez
′
= [e−0.3744

, e−0.81
, e0] ≈ [0.6878, 0.4452, 1.0]

Sum of exponentials:
S = 0.6878 + 0.4452 + 1.0 = 2.133

Softmax probabilities:

Softmax(z) =

[
0.6878

2.133
,
0.4452

2.133
,

1.0

2.133

]
≈ [0.3225, 0.2087, 0.4688]

Prediction: Class with highest probability is index 2 (Virginica)
Final output: Virginica with probability ≈ 0.4688

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 24 / 25



Conclusion

We performed a forward pass using actual weight matrices.

Classification was done step-by-step using linear layers and ReLU.

This process demonstrates how raw features turn into a class prediction.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 25 / 25


