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Sample from Iris Dataset

Sepal Length Sepal Width Petal Length Petal Width Class
5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
6.2 2.9 4.3 1.3 Versicolor
6.4 3.2 4.5 1.5 Versicolor
5.9 3.0 5.1 1.8 Virginica
6.3 3.3 6.0 2.5 Virginica
5.0 3.4 1.5 0.2 Setosa
6.0 2.2 4.0 1.0 Versicolor
5.8 2.7 5.1 1.9 Virginica
5.4 3.9 1.7 0.4 Setosa

Each instance contains 4 features: sepal length, sepal width, petal length, and petal width.
These are fed into the input layer. The class label is used for supervised learning to guide the

training process.
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Step-by-Step Explanation of IrisNet

Input Layer:

4 features: sepal length, sepal width, petal length, petal width.
Represented by 4 input neurons.

Hidden Layer:

10 fully connected neurons.
Applies ReLU activation for non-linearity.

Output Layer:

3 neurons for classifying Iris Setosa, Versicolor, and Virginica.
Final outputs used with softmax.

Training Setup:

Loss function: Mean Squared Error (MSE).
Optimizer: Stochastic Gradient Descent (SGD) with learning rate 0.001.
Weight initialization: Xavier for better convergence.
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Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.
Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
2

Where yi is the true value, and ŷi is the predicted value for sample i .

Optimizer: Stochastic Gradient Descent (SGD)

Simple and effective weight update rule:

θt+1 = θt − η · ∇θJ(θ)

Where:
η: learning rate
∇θJ(θ): gradient of the loss with respect to parameters

Weight Initialization: Xavier (Glorot Uniform)

Ensures weights are neither too small nor too large:

W ∼ U
(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Helps maintain stable gradients through layers.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 5 / 25



Training Details and Mathematical Formulas

Loss Function: Mean Squared Error (MSE)

Used for regression and can also be adapted for classification with one-hot encoded labels.

Defined as:

Loss =
1

N

N∑
i=1

(yi − ŷi )
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2
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IrisNet Architecture: 4-10-3 Feedforward Network

x1

x2

x3

x4

Bias

Bias

o1

o2

o3

Input Layer (4 Features)

Hidden Layer (10 Neurons, ReLU)

Output Layer (3 Classes)
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1. Import Libraries and Load Data

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import matplotlib.pyplot as plt
import numpy as np

iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1)

encoder = OneHotEncoder(sparse_output=False)
y_onehot = encoder.fit_transform(y)

scaler = StandardScaler()
X = scaler.fit_transform(X)
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2. Convert to Tensors and Split Data

X = torch.tensor(X, dtype=torch.float32)

y_onehot = torch.tensor(y_onehot, dtype=torch.float32)

X_train, X_test, y_train, y_test = train_test_split(

X, y_onehot, test_size=0.2, random_state=42)
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3. Define Neural Network Model

class IrisNet(nn.Module):

def __init__(self):

super(IrisNet, self).__init__()

self.fc1 = nn.Linear(4, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

x = self.relu(self.fc1(x))

x = self.fc2(x)

return x

model = IrisNet()
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4. Initialize Weights

def init_weights(m):

if isinstance(m, nn.Linear):

nn.init.xavier_uniform_(m.weight)

nn.init.zeros_(m.bias)

model.apply(init_weights)
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5. Loss and Optimizer

criterion = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)
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6. Setup Live Plot

plt.ion()

fig, ax = plt.subplots()

losses = []

line, = ax.plot(losses)

ax.set_xlim(0, 100)

ax.set_ylim(0, 2)

ax.set_xlabel("Epoch")

ax.set_ylabel("Loss")

ax.set_title("Live Training Loss")
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7. Training Loop

epochs = 2000
for epoch in range(epochs):

model.train()
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()

losses.append(loss.item())
line.set_xdata(range(len(losses)))
line.set_ydata(losses)
ax.set_xlim(0, max(10, len(losses)))
ax.set_ylim(0, max(losses) + 0.2)
fig.canvas.draw()
fig.canvas.flush_events()

with torch.no_grad():
model.eval()
test_outputs = model(X_test)
predicted = torch.argmax(test_outputs, dim=1)
true_labels = torch.argmax(y_test, dim=1)
correct = (predicted == true_labels).sum().item()
accuracy = correct / y_test.size(0)
print(f"Epoch {epoch}, Loss: {loss.item():.4f}, Accuracy: {accuracy:.4f}")
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8. Turn Off Interactive Plot

plt.ioff()

plt.show()
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9. Softmax for Class Probabilities

with torch.no_grad():

model.eval()

outputs = model(X_test)

probs = torch.softmax(outputs, dim=1)

print("Class Probabilities (Softmax):")

print(probs)
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10. Inspect Final Weights

print("\nFinal weights of the first layer (fc1):")

print(model.fc1.weight.data)

print("\nFinal weights of the second layer (fc2):")

print(model.fc2.weight.data)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Neural Network Architecture for Iris Data Set 16 / 25



Neural Network Architecture

Input: 4 features (Sepal length, Sepal width, Petal length, Petal width)

First layer: Fully connected (fc1) with 10 neurons

Activation function: ReLU

Second layer: Fully connected (fc2) with 3 output neurons

Output: Probabilities for 3 classes (Setosa, Versicolor, Virginica)
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Input Sample

Input vector: x = [5.1, 3.5, 1.4, 0.2]
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Weight Matrix of fc1 (10x4)

fc1 =



0.0092 −0.0404 −0.3916 −0.1771
0.0117 −0.5770 0.4710 0.0087
−0.1683 0.0416 0.0222 −0.5558
−0.0390 −0.2463 0.4016 0.1148
−0.4950 −0.1222 −0.0821 0.0790
−0.6394 0.5196 0.1958 0.2125
0.3020 −0.3998 0.6373 0.1429
−0.2564 0.2739 −0.1146 0.6342
0.3693 0.0801 −0.4481 0.0520
0.2756 −0.1551 −0.4070 0.3018


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First Layer Computation

Compute h = ReLU(W T
1 x):

h1 = ReLU(0.0092 ∗ 5.1 + (−0.0404) ∗ 3.5 + (−0.3916) ∗ 1.4 + (−0.1771) ∗ 0.2)
= ReLU(−0.6000) = 0

...

h10 = ReLU(0.2756 ∗ 5.1 + (−0.1551) ∗ 3.5 + (−0.4070) ∗ 1.4 + 0.3018 ∗ 0.2)
= ReLU(0.7638) = 0.7638

(Only sample entries shown; full values computed similarly)
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Hidden Activation Vector

Let’s assume after computing and applying ReLU, we get:

h = [0, 0, 0, 0.1, 0, 0.3, 0.2, 0, 0.05, 0.76]
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Weight Matrix of fc2 (3x10)

fc2 =

−0.3187 −0.5667 0.5418 0.5634 0.3118 0.3645 0.0211 −0.4647 0.1253 0.0995
−0.5565 0.7621 0.2503 −0.5887 0.2597 −0.0413 −0.1991 0.3135 0.3297 −0.4748
−0.6170 −0.4492 0.2311 0.6591 0.4670 0.1357 0.6929 0.4587 −0.2368 0.4764


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Second Layer Computation

Compute final output: y = W T
2 h

y1 = −0.3187 ∗ 0 + ...+ 0.0995 ∗ 0.76 = 0.0756

y2 = −0.5565 ∗ 0 + ...− 0.4748 ∗ 0.76 = −0.36

y3 = −0.6170 ∗ 0 + ...+ 0.4764 ∗ 0.76 = 0.45
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Prediction Using Softmax

Output logits from the network:
z = [0.0756,−0.36, 0.45]

Apply the Softmax function:

Softmax(zi ) =
ezi∑3
j=1 e

zj

Compute exponentials (shifted for numerical stability):
Let’s subtract the max logit (0.45) from each for stability:

z′ = [0.0756 − 0.45,−0.36 − 0.45, 0.45 − 0.45] = [−0.3744,−0.81, 0]

ez
′
= [e−0.3744

, e−0.81
, e0] ≈ [0.6878, 0.4452, 1.0]

Sum of exponentials:
S = 0.6878 + 0.4452 + 1.0 = 2.133

Softmax probabilities:

Softmax(z) =

[
0.6878

2.133
,
0.4452

2.133
,

1.0

2.133

]
≈ [0.3225, 0.2087, 0.4688]

Prediction: Class with highest probability is index 2 (Virginica)
Final output: Virginica with probability ≈ 0.4688
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Conclusion

We performed a forward pass using actual weight matrices.

Classification was done step-by-step using linear layers and ReLU.

This process demonstrates how raw features turn into a class prediction.
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