Span and Intersection of Subspaces

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ.

(日)

• Given vectors u_1, u_2, \ldots, u_m in a vector space V, their linear span is the set of all linear combinations: $span(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

$$span(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

• The zero vector always belongs to the span.

$$\operatorname{span}(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

- The zero vector always belongs to the span.
- The span is closed under vector addition and scalar multiplication.

$$\operatorname{span}(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

- The zero vector always belongs to the span.
- The span is closed under vector addition and scalar multiplication.
- The span of a set of vectors is a subspace of V.

$$\operatorname{span}(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

- The zero vector always belongs to the span.
- The span is closed under vector addition and scalar multiplication.
- The span of a set of vectors is a subspace of V.
- Theorem:

$$\operatorname{span}(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

- The zero vector always belongs to the span.
- The span is closed under vector addition and scalar multiplication.
- The span of a set of vectors is a subspace of V.
- Theorem:
 - (i) $\operatorname{span}(S)$ is a subspace of V that contains S.

$$\operatorname{span}(u_1, u_2, \ldots, u_m) = \{a_1u_1 + a_2u_2 + \cdots + a_mu_m \mid a_i \in \mathbb{K}\}$$

- The zero vector always belongs to the span.
- The span is closed under vector addition and scalar multiplication.
- The span of a set of vectors is a subspace of V.
- Theorem:
 - (i) $\operatorname{span}(S)$ is a subspace of V that contains S.
 - (ii) If W is a subspace of V containing S, then $\operatorname{span}(S) \subseteq W$.

• Example 1: Span of $u_1 = (1,0)$ and $u_2 = (0,1)$ in \mathbb{R}^2 is the entire plane \mathbb{R}^2 .

3

- Example 1: Span of $u_1 = (1,0)$ and $u_2 = (0,1)$ in \mathbb{R}^2 is the entire plane \mathbb{R}^2 .
- Example 2: Span of $u_1 = (1,2)$ and $u_2 = (2,4)$ is a line in \mathbb{R}^2 since u_2 is a multiple of u_1 .

くロン 人間と くほと くほと

- Example 1: Span of $u_1 = (1,0)$ and $u_2 = (0,1)$ in \mathbb{R}^2 is the entire plane \mathbb{R}^2 .
- Example 2: Span of $u_1 = (1,2)$ and $u_2 = (2,4)$ is a line in \mathbb{R}^2 since u_2 is a multiple of u_1 .
- Example 3: Span of $u_1 = (1,0,0)$, $u_2 = (0,1,0)$ in \mathbb{R}^3 is the xy-plane.

- Example 1: Span of $u_1 = (1,0)$ and $u_2 = (0,1)$ in \mathbb{R}^2 is the entire plane \mathbb{R}^2 .
- Example 2: Span of $u_1 = (1,2)$ and $u_2 = (2,4)$ is a line in \mathbb{R}^2 since u_2 is a multiple of u_1 .
- Example 3: Span of $u_1 = (1,0,0)$, $u_2 = (0,1,0)$ in \mathbb{R}^3 is the xy-plane.
- Example 4: Span of $u_1 = (1, 1, 1)$, $u_2 = (0, 1, 2)$, $u_3 = (1, 0, 1)$ in \mathbb{R}^3 is the entire space \mathbb{R}^3 .

- Example 1: Span of $u_1 = (1,0)$ and $u_2 = (0,1)$ in \mathbb{R}^2 is the entire plane \mathbb{R}^2 .
- Example 2: Span of $u_1 = (1,2)$ and $u_2 = (2,4)$ is a line in \mathbb{R}^2 since u_2 is a multiple of u_1 .
- Example 3: Span of $u_1 = (1, 0, 0)$, $u_2 = (0, 1, 0)$ in \mathbb{R}^3 is the xy-plane.
- Example 4: Span of $u_1 = (1, 1, 1)$, $u_2 = (0, 1, 2)$, $u_3 = (1, 0, 1)$ in \mathbb{R}^3 is the entire space \mathbb{R}^3 .
- Example 5: Span of the rows of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is the line defined by (1,2) because the second row is a multiple of the first.

• Let U and W be subspaces of a vector space V.

3

イロト 不得 とくほ とくほとう

- Let U and W be subspaces of a vector space V.
- The zero vector belongs to both U and W, so $0 \in U \cap W$.

イロト 不得 とくほ とくほとう

- Let U and W be subspaces of a vector space V.
- The zero vector belongs to both U and W, so $0 \in U \cap W$.
- Let $u, v \in U \cap W$, so $u, v \in U$ and $u, v \in W$.

イロト 不得 とくほ とくほとう

V

- Let U and W be subspaces of a vector space V.
- The zero vector belongs to both U and W, so $0 \in U \cap W$.
- Let $u, v \in U \cap W$, so $u, v \in U$ and $u, v \in W$.
- Since U and W are subspaces, $au + bv \in U$ and $au + bv \in W$ for all scalars $a, b \in K$.

くロン 人間と くほと くほと

- Let U and W be subspaces of a vector space V.
- The zero vector belongs to both U and W, so $0 \in U \cap W$.
- Let $u, v \in U \cap W$, so $u, v \in U$ and $u, v \in W$.
- Since U and W are subspaces, $au + bv \in U$ and $au + bv \in W$ for all scalars $a, b \in K$.
- Therefore, $au + bv \in U \cap W$.

- Let U and W be subspaces of a vector space V.
- The zero vector belongs to both U and W, so $0 \in U \cap W$.
- Let $u, v \in U \cap W$, so $u, v \in U$ and $u, v \in W$.
- Since U and W are subspaces, $au + bv \in U$ and $au + bv \in W$ for all scalars $a, b \in K$.
- Therefore, $au + bv \in U \cap W$.
- Hence, $U \cap W$ is a subspace of V.

Theorem

The intersection of any number of subspaces of a vector space V is a subspace of V.

Bindeshwar Singh Kushwaha (PostNetwork Academy)

2

• In \mathbb{R}^2 : $U = \operatorname{span}\{(1,0)\}, W = \operatorname{span}\{(0,1)\}$

∃ 990

- In \mathbb{R}^2 : $U = \operatorname{span}\{(1,0)\}, W = \operatorname{span}\{(0,1)\}$
- Intersection: $U \cap W = \{(0,0)\}$

• In \mathbb{R}^3 : $U = \operatorname{span}\{(1,0,0), (0,1,0)\}$

€ 990

イロト イヨト イヨト イヨト

- In \mathbb{R}^3 : $U = \mathbf{span}\{(1,0,0), (0,1,0)\}$
- $W = span\{(1, 1, 0)\}$

∃ 990

- In \mathbb{R}^3 : $U = \mathbf{span}\{(1,0,0), (0,1,0)\}$
- $W = span\{(1,1,0)\}$
- Intersection: $U \cap W = \operatorname{span}\{(1,1,0)\}$

∃ 990

イロト イヨト イヨト イヨト

Numerical Example 3

æ -

Numerical Example 3

<ロ> (四) (四) (三) (三) (三) (三)

• Let's assume B lies in the column space of A, so the intersection is: span $\{(1,2,3)^T\}$

Ξ.

• U =span $\{(1, 2, 3), (4, 5, 6)\}$

∃ 990

- U =span $\{(1, 2, 3), (4, 5, 6)\}$
- W =span $\{(1,0,0), (0,1,0)\}$

- U =span $\{(1, 2, 3), (4, 5, 6)\}$
- W =span $\{(1,0,0), (0,1,0)\}$
- The intersection lies in the XY-plane; the exact intersection can be found by solving the system.

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

(日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

(日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э.

(日) (同) (日) (日)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

(日) (同) (日) (日)

Reach PostNetwork Academy

Website

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

GitHub Repositories

www.github.com/postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

Thank You!