Ordinary Differential Equation Questions and Solutions

Solving First Order and First Degree Differential Equations

Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy

Example 1: Solve \( \frac{dy}{dx} = e^x \)

  • Equation: \( \frac{dy}{dx} = e^x \)
  • Multiply both sides by \( dx \): \( dy = e^x dx \)
  • Integrate: \( \int dy = \int e^x dx \)
  • Solution: \( y = e^x + c \)
  • General solution: \( y(x) = e^x + c \)

Example 2: Initial Value Problem

  • Given: \( (1 + y^2)dx + (1 + x^2)dy = 0,\quad y(0) = -1 \)
  • Rewrite: \( \frac{dx}{1 + x^2} + \frac{dy}{1 + y^2} = 0 \)
  • Integrate: \( \tan^{-1} x + \tan^{-1} y = c \)
  • Using initial condition: \( \tan^{-1}(0) + \tan^{-1}(-1) = -\frac{\pi}{4} \)
  • Solution: \( \tan^{-1} x + \tan^{-1} y = -\frac{\pi}{4} \)

Example 3: Solve Initial Value Problem

  • \( \frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y – 1)} \), \( y \ne 1 \), \( y(0) = -1 \)
  • Rewriting: \( 2(y – 1)dy = (3x^2 + 4x + 2)dx \)
  • Integration: \( y^2 – 2y = x^3 + 2x^2 + 2x + c \)
  • Using initial values: \( 1 + 2 = 3 \Rightarrow c = 3 \)
  • Solution: \( y^2 – 2y = x^3 + 2x^2 + 2x + 3 \)
  • Solving for \( y \): \( y = 1 \pm \sqrt{x^3 + 2x^2 + 2x + 4} \)

Choosing Correct Root

  • Use \( y(0) = -1 \): \( y = 1 – \sqrt{4} = -1 \)
  • Final solution: \( y = 1 – \sqrt{x^3 + 2x^2 + 2x + 4} \)

Domain of Validity

  • Ensure \( \sqrt{x^3 + 2x^2 + 2x + 4} \) is real
  • Valid for \( x > -2 \)

Definition: Homogeneous Function

  • A function \( h(x, y) \) is homogeneous of degree \( n \) if:
  • \( h(\lambda x, \lambda y) = \lambda^n h(x, y) \) for all \( \lambda > 0 \)

Question: Solve \( \frac{dy}{dx} = \frac{2y^2 + 3xy}{x^2} \), \( x > 0 \)

  • Homogeneous equation: \( \frac{dy}{dx} = 2 \left( \frac{y}{x} \right)^2 + 3 \left( \frac{y}{x} \right) \)
  • Use substitution: \( v = \frac{y}{x},\; y = vx,\; \frac{dy}{dx} = v + x \frac{dv}{dx} \)
  • Results in: \( \frac{dv}{dx} = \frac{v(2v + 1)}{x} \)
  • Separate: \( \frac{dv}{v(v+1)} = \frac{2dx}{x} \)
  • Partial fractions: \( \frac{1}{v(v+1)} = \frac{1}{v} – \frac{1}{v+1} \)
  • Integrate: \( \ln\left|\frac{v}{v+1}\right| = \ln|cx^2| \)
  • Back-substitute: \( \frac{y}{x+y} = cx^2 \Rightarrow y = \frac{cx^3}{1 – cx^2} \)

Question: Solve \( \frac{dy}{dx} = \frac{y^3}{x^3} + \frac{y}{x} \), \( x > 0 \)

  • Homogeneous equation, use \( y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx} \)
  • Simplifies to: \( x \frac{dv}{dx} = v^3 \)
  • Separate: \( \int \frac{1}{v^3} dv = \int \frac{1}{x} dx \)
  • Integration: \( -\frac{1}{2v^2} = \ln x + \ln |c| \)
  • Back-substitute: \( v = \frac{y}{x} \Rightarrow y^2 = -\frac{x^2}{2 \ln(x|c|)} \)

PDF

DifferentialEquation1

Video

©Postnetwork-All rights reserved.