Moment Generating Function of Binomial Distribution

Moment Generating Function of Binomial Distribution

Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy

Definition of Moment Generating Function

  • The moment generating function (m.g.f.) of a random variable \( X \) is defined as:
    \[
    M_X(t) = E(e^{tX})
    \]
  • For a continuous random variable:
    \[
    M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx
    \]
  • For a discrete random variable:
    \[
    M_X(t) = \sum_x e^{tx} f(x)
    \]

Series Expansion of MGF

  • Using Taylor series expansion of \( e^{tX} \):
    \[
    e^{tX} = 1 + tX + \frac{t^2 X^2}{2!} + \frac{t^3 X^3}{3!} + \cdots + \frac{t^r X^r}{r!} + \cdots
    \]
  • Taking expectation:
    \[
    M_X(t) = 1 + t E(X) + \frac{t^2}{2!} E(X^2) + \cdots + \frac{t^r}{r!} E(X^r) + \cdots
    \]
  • This is:
    \[
    M_X(t) = \sum_{r=0}^\infty \frac{t^r}{r!} \mu_r’
    \]
    where \( \mu_r’ = E(X^r) \) is the \( r \)th moment about origin.

Generating Moments Using MGF

  • Since MGF generates moments, it is called the moment generating function.
  • Differentiating \( M_X(t) \) \( r \) times w.r.t. \( t \), we get:
    \[
    \left. \frac{d^r}{dt^r} M_X(t) \right|_{t=0} = \mu_r’
    \]
  • Example:
    \[
    \frac{d}{dt} M_X(t) = E\left[ X e^{tX} \right], \quad \text{and at } t = 0, \quad E(X)
    \]

MGF of Binomial Distribution

  • Let \( X \sim \text{Bin}(n, p) \), then:
    \[
    M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} \binom{n}{x} p^x q^{n-x}
    \]
  • Rewriting:
    \[
    = \sum_{x=0}^n \binom{n}{x} (qe^t)^x (pe^t)^{n-x}
    \]
  • Combine:
    \[
    = (q e^t + p e^t)^n
    \]
  • Let \( q = 1 – p \), then:
    \[
    M_X(t) = (q + p e^t)^n
    \]
  • Now calculate moments:
  • Mean (\( \mu \)):
    \[
    \mu = M_X'(0) = np
    \]
  • Variance (\( \sigma^2 \)):
    \[
    \sigma^2 = M_X”(0) – (M_X'(0))^2 = npq
    \]
mgfbinomial2

Reach PostNetwork Academy

Thank You!

©Postnetwork-All rights reserved.