Moment Generating Function of Binomial Distribution
Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy
Definition of Moment Generating Function
- The moment generating function (m.g.f.) of a random variable \( X \) is defined as:
\[
M_X(t) = E(e^{tX})
\] - For a continuous random variable:
\[
M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) \, dx
\] - For a discrete random variable:
\[
M_X(t) = \sum_x e^{tx} f(x)
\]
Series Expansion of MGF
- Using Taylor series expansion of \( e^{tX} \):
\[
e^{tX} = 1 + tX + \frac{t^2 X^2}{2!} + \frac{t^3 X^3}{3!} + \cdots + \frac{t^r X^r}{r!} + \cdots
\] - Taking expectation:
\[
M_X(t) = 1 + t E(X) + \frac{t^2}{2!} E(X^2) + \cdots + \frac{t^r}{r!} E(X^r) + \cdots
\] - This is:
\[
M_X(t) = \sum_{r=0}^\infty \frac{t^r}{r!} \mu_r’
\]
where \( \mu_r’ = E(X^r) \) is the \( r \)th moment about origin.
Generating Moments Using MGF
- Since MGF generates moments, it is called the moment generating function.
- Differentiating \( M_X(t) \) \( r \) times w.r.t. \( t \), we get:
\[
\left. \frac{d^r}{dt^r} M_X(t) \right|_{t=0} = \mu_r’
\] - Example:
\[
\frac{d}{dt} M_X(t) = E\left[ X e^{tX} \right], \quad \text{and at } t = 0, \quad E(X)
\]
MGF of Binomial Distribution
- Let \( X \sim \text{Bin}(n, p) \), then:
\[
M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} \binom{n}{x} p^x q^{n-x}
\] - Rewriting:
\[
= \sum_{x=0}^n \binom{n}{x} (qe^t)^x (pe^t)^{n-x}
\] - Combine:
\[
= (q e^t + p e^t)^n
\] - Let \( q = 1 – p \), then:
\[
M_X(t) = (q + p e^t)^n
\] - Now calculate moments:
- Mean (\( \mu \)):
\[
\mu = M_X'(0) = np
\] - Variance (\( \sigma^2 \)):
\[
\sigma^2 = M_X”(0) – (M_X'(0))^2 = npq
\]
Reach PostNetwork Academy
- Website: www.postnetwork.co
- YouTube: @postnetworkacademy
- Facebook: facebook.com/postnetworkacademy
- LinkedIn: linkedin.com/company/postnetworkacademy
- GitHub: github.com/postnetworkacademy