Moments of Binomial Distribution Video I Data Science and A.I. Lect. Series

 

Moments of Binomial Distribution

By Bindeshwar Singh Kushwaha — PostNetwork Academy


Moment Definition

Let \( X \sim B(n, p) \) be a binomial random variable.

  • The \( r^\text{th} \) raw moment about origin:
    \( \mu_r’ = \mathbb{E}(X^r) = \sum_{x=0}^{n} x^r \cdot \mathbb{P}(X = x) \)
  • First-order moment (mean):
    \( \mu_1′ = \mathbb{E}(X) \)
  • Binomial PMF:
    \( \mathbb{P}(X = x) = \binom{n}{x} p^x q^{n-x}, \quad q = 1 – p \)

Mean Computation

Substitute PMF:

\( \mu_1′ = \sum_{x=1}^{n} x \binom{n}{x} p^x q^{n – x} \)

Using identity \( x \binom{n}{x} = n \binom{n-1}{x-1} \):

\( \mu_1′ = n p \sum_{r=0}^{n-1} \binom{n-1}{r} p^r q^{n-1 – r} \)

Recognize the binomial expansion:

\( \mu_1′ = np \)

Second Moment and Variance

Start with:

\( \mu_2′ = \sum_{x=0}^{n} x^2 \binom{n}{x} p^x q^{n – x} \)

Use identity:

\( x^2 = x(x – 1) + x \)

Split summation:

\( \mu_2′ = n(n – 1)p^2 + \mu_1′ = n(n – 1)p^2 + np \)

Variance:

\( \text{Var}(X) = \mu_2′ – (\mu_1′)^2 = np(1 – p) \)

Third Moment

Using:

\( x^3 = x(x – 1)(x – 2) + 3x(x – 1) + x \)

Apply identities and simplify:

\( \mu_3′ = n(n-1)(n-2)p^3 + 3n(n-1)p^2 + np \)

Third central moment:

\( \mu_3 = \mu_3′ – 3\mu_2 \mu_1′ + 2(\mu_1′)^3 = npq(1 – 2p) \)

Fourth Moment and Kurtosis

Using:

\( x^4 = x(x-1)(x-2)(x-3) + 6x(x-1)(x-2) + 7x(x-1) + x \)

Compute:

\( \mu_4′ = n(n-1)(n-2)(n-3)p^4 + 6n(n-1)(n-2)p^3 + 7n(n-1)p^2 + np \)

Central moment:

\( \mu_4 = \mu_4′ – 4\mu_3’\mu_1 + 6\mu_2′(\mu_1)^2 – 3(\mu_1)^4 \)

Skewness and Kurtosis

Skewness:

\( \gamma_1 = \frac{q – p}{\sqrt{npq}} \)

Kurtosis:

\( \gamma_2 = \frac{1 – 6pq}{npq} \)

Summary

  • \( \mu_1 = np \), \( \mu_2 = npq \)
  • \( \mu_3 = npq(1 – 2p) \)
  • \( \mu_4 = npq[1 + 3(n-2)pq] \)
  • \( \gamma_1 = \dfrac{q – p}{\sqrt{npq}} \)
  • \( \gamma_2 = \dfrac{1 – 6pq}{npq} \)

PDF

Moments of Binomial Distribution

Video

 

Reach PostNetwork Academy

Thank You!

 

©Postnetwork-All rights reserved.