Solving First Order and First Degree Differential Equations
Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy
Reducing to Homogeneous Form
- Consider the differential equation of the form:
$$\frac{dy}{dx} = \frac{a x + b y + c}{a’ x + b’ y + c’}$$ - To reduce it to homogeneous form, use the substitution:
$$x = X + h, \quad y = Y + k$$ - Choose constants \( h \) and \( k \) such that the equation becomes homogeneous in \( X \) and \( Y \).
- Substituting yields:
$$\frac{dY}{dX} = \frac{aX + bY + (ah + bk + c)}{a’X + b’Y + (a’h + b’k + c’)}$$ - To make it homogeneous:
$$ah + bk + c = 0, \quad a’h + b’k + c’ = 0$$ - Solve these simultaneous equations for \( h \) and \( k \).
Special Cases and Limitations
- If:
$$ah + bk + c = 0, \quad a’h + b’k + c’ = 0$$
has no unique solution, then: - For a unique solution, the determinant must be non-zero:
$$\frac{a}{a’} \ne \frac{b}{b’} \quad \text{or} \quad ab’ \ne a’b$$ - If all terms are proportional:
$$\frac{a}{a’} = \frac{b}{b’} = \frac{c}{c’}$$
then:
$$\frac{dy}{dx} = 1 \Rightarrow y = x + C$$ - If no simplification works, try integrating factors or symmetry-based substitutions.
Example 1: Solve \( \frac{dy}{dx} = \frac{x – 4y – 1}{x + y + 5} \)
- Given:
$$\frac{dy}{dx} = \frac{x – 4y – 1}{x + y + 5}$$ - Make substitution:
$$x = X – 2, \quad y = Y – 3$$ - Then:
$$\frac{dY}{dX} = \frac{X – 4Y}{X + Y}$$ - Let \( Y = vX \) then:
$$v + X \frac{dv}{dX} = \frac{1 – 4v}{1 + v}$$ - Simplifying:
$$\frac{dv}{dX} = \frac{1 – 5v – v^2}{X(1 + v)}$$ - Separate and integrate:
$$\int \frac{1 + v}{1 – 5v – v^2} \, dv = \int \frac{1}{X} \, dX$$ - Right-hand side:
$$\ln |X| + c$$
Final Answer of Example 1
- Left-hand side:
$$\frac{1}{2} \ln(1 – 5v – v^2) – \tan^{-1}(v + 2.5) + c$$ - Back-substitute \( v = \frac{Y}{X} \), \( Y = y + 3 \), \( X = x + 2 \)
- Final answer:
$$\frac{1}{2} \ln\left[(x + 2)^2 + (y + 3)^2\right] + \tan^{-1}\left(\frac{y + 3}{x + 2}\right) = c$$
Example 2: Solve \( (4x + 6y + 5)\,dy = (3y + 2x + 5)\,dx \)
- Rewrite:
$$\frac{dy}{dx} = \frac{3y + 2x + 5}{4x + 6y + 5}$$ - Let \( v = 2x + 3y \), then:
$$\frac{dy}{dx} = \frac{v + 5}{2v + 5}$$ - So:
$$\frac{dv}{dx} = \frac{2(v + 5)}{2v + 5}$$ - Separate:
$$\frac{2v + 5}{v + 5} \, dv = dx$$ - Algebra:
$$\frac{2v + 5}{v + 5} = 2 – \frac{5}{v + 5}$$ - Integrate:
$$2v – 5 \ln |v + 5| = x + c$$ - Back-substitute:
$$2(2x + 3y) – 5 \ln |2x + 3y + 5| = x + c$$
Video
Reach PostNetwork Academy
- Website: www.postnetwork.co
- YouTube: youtube.com/@postnetworkacademy
- Facebook: facebook.com/postnetworkacademy
- LinkedIn: linkedin.com/company/postnetworkacademy
- GitHub: github.com/postnetworkacademy