Linear Combinations and Spanning Sets
Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy
Introduction:
In this post, we will explore the concepts of Linear Combinations and Spanning Sets in the context of vector spaces in Linear Algebra.
Linear Combinations and Spanning Sets
Let V be a vector space over a field K.
A vector v in V is a linear combination of vectors u1, u2, …, um in V if there exist scalars a1, a2, …, am in K such that:
\[
v = a_1 u_1 + a_2 u_2 + \cdots + a_m u_m
\]
Alternatively, v is a linear combination of u1, u2, …, um if there is a solution to:
\[
v = x_1 u_1 + x_2 u_2 + \cdots + x_m u_m
\]
where x1, x2, …, xm are unknown scalars.
Example: Linear Combination in R3
Suppose we want to express v = (3, 7, -4) in R3 as a linear combination of the vectors:
-
- u1 = (1, 2, 3)
- u2 = (2, 3, 7)
- u3 = (3, 5, 6)
- Seek scalars x, y, z such that:
v = x u1 + y u2 + z u3
Matrix Equation Form:
\[
\begin{bmatrix}
3 \\
7 \\
-4
\end{bmatrix}
=
x
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
+
y
\begin{bmatrix}
2 \\
3 \\
7
\end{bmatrix}
+
z
\begin{bmatrix}
3 \\
5 \\
6
\end{bmatrix}
\]
Or the system of equations:
\[
\begin{cases}
x + 2y + 3z = 3 \\
2x + 3y + 5z = 7 \\
3x + 7y + 6z = -4
\end{cases}
\]
Row Reduction and Solution:
After reducing the system to echelon form, we get:
\[
\begin{cases}
x + 2y + 3z = 3 \\
-y – z = 1 \\
y – 3z = -13
\end{cases}
\]
Back-substitution yields the solution:
z = 3, y = -4, x = 2
Thus, v = 2u1 – 4u2 + 3u3
Example: Linear Combination in P(t)
Suppose we want to express the polynomial v = 3t2 + 5t – 5 as a linear combination of:
-
- p1 = t2 + 2t + 1
- p2 = 2t2 + 5t + 4
- p3 = t2 + 3t + 6
- Seek scalars x, y, z such that:
v = x p1 + y p2 + z p3
Expanding the right-hand side:
\[
x(t^2 + 2t + 1) + y(2t^2 + 5t + 4) + z(t^2 + 3t + 6)
\]
Combine like terms:
\[
= (x + 2y + z)t^2 + (2x + 5y + 3z)t + (x + 4y + 6z)
\]
Equating coefficients with 3t2 + 5t – 5 gives the system:
\[
\begin{cases}
x + 2y + z = 3 \\
2x + 5y + 3z = 5 \\
x + 4y + 6z = -5
\end{cases}
\]
Row Reduction and Solution:
After reducing the system:
\[
\begin{cases}
x + 2y + z = 3 \\
y + z = -1 \\
3z = -6
\end{cases}
\]
Solving by back-substitution:
z = -2, y = 1, x = 3
Thus, v = 3p1 + p2 – 2p3
Spanning Sets
Let V be a vector space over a field K. Vectors u1, u2, …, um in V are said to span V if every vector in V is a linear combination of them:
\[
v = a_1 u_1 + a_2 u_2 + \cdots + a_m u_m
\]
Remark 1: If u1, …, um span V, then so does w, u1, …, um for any w in V.
Remark 2: If uk is a linear combination of the others, removing it still spans V.
Remark 3: If one uk = 0, then removing it still spans V.
Video
Reach PostNetwork Academy
- Website: www.postnetwork.co
- YouTube Channel: www.youtube.com/@postnetworkacademy